A Face Recognition Signature Combining Patch-based Features with Soft Facial Attributes

نویسندگان

  • Lingfeng Zhang
  • Pengfei Dou
  • Ioannis A. Kakadiaris
چکیده

This paper focuses on improving face recognition performance with a new signature combining implicit facial features with explicit soft facial attributes. This signature has two components: the existing patch-based features and the soft facial attributes. A deep convolutional neural network adapted from state-of-the-art networks is used to learn the soft facial attributes. Then, a signature matcher is introduced that merges the contributions of both patch-based features and the facial attributes. In this matcher, the matching scores computed from patch-based features and the facial attributes are combined to obtain a final matching score. The matcher is also extended so that different weights are assigned to different facial attributes. The proposed signature and matcher have been evaluated with the UR2D system on the UHDB31 and IJB-A datasets. The experimental results indicate that the proposed signature achieve better performance than using only patch-based features. The Rank-1 accuracy is improved significantly by 4% and 0.37% on the two datasets when compared with the UR2D system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model

Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Recognition of Facial Attributes Using Adaptive Sparse Representations of Random Patches

It is well known that some facial attributes –like soft biometric traits– can increase the performance of traditional biometric systems and help recognition based on human descriptions. In addition, other facial attributes –like facial expressions– can be used in human– computer interfaces, image retrieval, talking heads and human emotion analysis. This paper addresses the problem of automated ...

متن کامل

Automatic facial attribute analysis via adaptive sparse representation of random patches

It is well known that some facial attributes –like soft biometric traits– can increase the performance of traditional biometric systems and help recognition based on human descriptions. In addition, other facial attributes, such as facial expressions, can be used in human–computer interfaces, image retrieval, talking heads and human emotion analysis. This paper addresses the problem of automate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018